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A finite difference method is presented for investigating an axisymmetric continuum flow of 
a strongly compressible rotating gas in a gas centrifuge. Numerical investigations are made on 
both thermally and mechanically driven flows in an annulus to evaluate the method. The 
present method, based on the DuFort-Frankel/upwind scheme, is efficient for computations of 
these strongly compressible rotating flows. It is found that the thermally driven flow becomes 
weaker as the compressibility is increased. The viscous dissipation increases the gas 
temperature of the mechanically driven flow despite cooling by the expansion work. 

1. INTRODUCTION 

A fluid dynamics problem for a compressible rotating flow has arisen in uranium 
enrichment based on an ultracentrifugation process. This process uses the difference 
in the behaviour of two kinds of uranium isotope species in a strong centrifugal force 
field created inside a rapidly rotating cylinder of a gas centrifuge [ 11. Centrifugal 
force causes the heavier isotope to move preferentially towards the pheriphery of the 
cylinder, producing a partial separation of the uranium isotopes in the radial 
direction. The success of the gas centrifuge depends on how to change the direction of 
enrichment from radial to axial by the induction of an axial flow in the rotation. This 
axial circulation flow is driven by imposing an appropriate temperature distribution 
on the solid boundaries of the cylinder (thermal drive) or by inserting a stationary 
object (scoop) near one end of the cylinder (mechanical drive). Both types of drives 
may also be combined (thermo-mechanical drive). 

Theoretical investigations have been made by two different approaches [2-4]. One 
method is analytical and the other is numerical. With the former method, the 
compressible rotating flows were initially investigated on the basis of a classical 
approach [ 21. Two typical approximations were presented, i.e., the long and the short 
cylinder approximations corresponding, respectively, to neglect of the end plates or 
that of the sidewall of the cylinder. However, these analyses were not appropriate 
from a gasdynamics viewpoint. Thermally and mechanically driven flows have also 
been investigated by using the boundary layer analyses [S-11] in which the counter- 
current flow is assumed as a small perturbation from the rigid body rotation. 
According to the results of the linear analysis, the flows in a gas centrifuge are essen- 
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tially caused by the geostrophic wind (mechanically driven flow) or thermal wind 
(thermally driven flow) in the inviscid core. These winds in the inviscid core change 
into the Ekman layers on the end plates and into the Eli4 layer or the E"' layer [ 12) 
on the sidewall of the cylinder. These works are fruitful extensions of the theory of 
incompressible rotating flow [ 12-141 to the case of compressible rotating flow. The 
flow in a gas centrifuge is systematically analyzed by the boundary layer theory 
which is not used in the classical analysis. However, the range of applicability of the 
boundary layer theory is restricted to a local analysis when the compressibility effect 
becomes strong, or when the geometry of the gas centrifuge becomes complex. 

In a numerical investigation, the motion of the gas is described by the equations of 
the continuum mechanics, i.e., the conservation of mass (continuity), momentum 
(Navier-Stokes equations) and energy together with a thermodynamics state law 
(perfect gas law). Numerical investigations have been made on the thermally driven 
flow of an incompressible fluid in a rotating cylinder [ 151 by using a finite difference 
method (FDM) and also on the thermally driven flow of a compressible gas in a 
rotating annulus [ 161 by using the Fourier spectral method. These works are not 
sufftcient from the viewpoint of numerical investigations because either the 
compressibility [ 151 or nonlinearity [ 161 is neglected in the set of equations. 
Recently, three numerical methods have been developed [ 17-191. The solution 
procedures are a FDM coupled with an overrelaxation method applied to the set of 
linearized equations [ 171, a FDM modified Newton algorithm applied to the set of 
nonlinear equations with no dissipation function [ 181, and a finite element method 
(FEM)/Newton-Raphson applied to the set of nonlinear equations with a dissipation 
function [ 191. However, these methods need step-by-step iterations in the case of 
mixed boundary conditions such as for the thermo-mechanically driven flow (in 
which both the thermal and the mechanical drives coexist) or the nonlinear case such 
as for the flow which greatly deviates from rigid body rotation, because the 
convergency of these methods strongly depends on the initial guess of field variables. 
All these numerical studies except [ 151 treat steady flows. 

The first aim of this paper is to establish a new method for numerical study of the 
flow in a gas centrifuge. This kind of study is a fundamental step towards 
understanding the separation process in a gas centrifuge. For this purpose, a finite 
difference method based on the DuFort-Frankel/upwind scheme is developed for 
solving the set of time-dependent nonlinear equations of strongly compressible 
rotating flow. The second aim is an investigation of the strongly compressible 
rotating flow such as the thermally and mechanically driven flows to which the 
boundary layer theory is not applicable. 

2. BASIC EQUATIONS OF A COMPRESSIBLE ROTATING FLOW 

Consider an axisymmetric continuum flow of a compressible rotating gas in an 
annulus. Figure 1 shows the rotating cylindrical coordinates fixed on the annulus. The 
radii of the inner and the outer cylinders are r,L and L, respectively, and the height 



FIG. 1. A system of rotating cylindrical coordinates fixed on an annulus. 
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FIG. 2. Boundary conditions for (a) a thermally driven flow and (b) a mechanically driven flow. 
The annulus is rotating for a thermally driven flow and the uniform temperature T, is imposed on the 
annulus for a mechanically driven flow. 

is H(=/iL), where A is an aspect ratio. Figure 2 illustrates the boundary conditions 
for thermally and mechanically driven flows. In the first problem (I), the annulus is 
rotating about the axis of rotation with a constant angular velocity R and the flow is 
driven by the temperature difference impulsively imposed on the surface; the top and 
bottom plates and the inner cylinder are changed from an initial temperature of T,, to 
temperatures of 7’, + AT, To-AT and To, respectively, and the outer cylinder is 
changed to a temperature of the form To + (r//i - l/2) 241: Here coordinates (r, z) 
are scaled by the radius of the outer cylinder of L. In the second problem (II), the 
uniform temperature To is imposed on the surface and the flow is mechanically driven 
by the angular velocity difference of the annulus; initially, both gas and the annulus 
are rotating with the angular velocity 9 and at temperature To, and then the bottom 
plate and the inner cylinder are stopped impulsively. 
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Let L, Q-l, a,!,, To and p,, be the characteristic length, time, velocity, temperature 
and density, respectively; then the continuity, the Navier-Stokes, the energy and the 
state equations scaled by (L, a-‘, .RL, T,,, po) are 

Wu) -+pr-pv 
Dr 

=---!-ap+E 
yM2 ar 

-=-Lap+. D@w) 
Dt g@a~ 

D@T) F+ (y- l)pTQ=yE/a,V2T+ (y- l)M’E@, 

P=PT, 

where 

I a aw 
Q=V.q=--(ru)+---, 

r ar az 

@=2[(g-)2+(;)2+(32] +($-a’+@ 
+(F+$)'-;Q2. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

2 

(8) 

In the above, D( )/Dt = a( )/& + V [( ) q] re p resents the Lagrangian derivative; 
u, v and w the radial, azimuthal and axial components of the fluid velocity 
q = (u, v, w) measured in a rotating cylindrical coordinates (r, rp, z), respectively; p 
the density; T the temperature; and p the pressure. The nondimensional numbers in 
the bove equations are defined by 

E = WP,PL~ (Ekman number), 

kf = QLAhm3-c (Mach number), 

up = W,lk) (Prandtl number), 

Y = c,/c,, (Specific heat ratio), 

(9) 
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where ,U is the viscosity; k the thermal conductivity; C, and C,, the specific heats of 
constant pressure and volume, respectively; R the universal gas constant; and m the 
molecular weight of the gas. 

The initial condition chosen here is the state of rigid body rotation given by 

pe = exp[(l/2) yMZ(r2 - I)], 

u=v=w=e=o, (10) 

where 8 = T - 1 denotes the temperature difference from the characteristic value. The 
boundary conditions are as follows. 

(I) Thermally driven flow: 

u=u=w=o, at all boundaries, 

8=--E, at z=O, 

e=cc, at z=A, 

e = E(~Z/A - I), at r= 1, 

e= 0, at r=rO. 

(II) Mechanically driven flow: 

u=w=e=o, at all boundaries, 

v =o, at r= 1 and z=A, 

v=-r, at z = 0, 

v = -I,, at r = ro. 

(11) 

(12) 

To get information on the status of the unsteady motion, we introduce the kinetic 
energies and the average temperature of the gas defined by 

4 = (fpu*), 

E, = (+Pu’>, 

E, = (+pw’), 

E, = E, + E, + E,., 

e= CT- l)/(l), 

(13) 

where ( ) denotes the volume integral over the r-z cross section of the annulus 
defined by 
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3. FINITE DIFFERENCE METHOD BASED ON CONSERVATION LAWS 

The finite difference method developed in this paper is based on conservation laws. 
There are two problems to be solved before deriving the finite difference equations. 
First is the mathematical expressions from which we start. We used the primitive 
form of equations which describe the conservations of mass, momentum and energy 
in the torous volume (27~) r dr dz instead of Eqs. (lt(6); these are derived by the 
replacement of p by p^ = pr in Eqs. (lk(6). Here, the convective term is transformed 
from cylindrical into Cartesian coordinates. Second is the grid arrangement on the 
computational domain which is divided into rectangular cells (i, j) or sides dri and 
Azj in the radial and axial directions, respectively. Figure 3 shows the staggered grids 
in which the physical variables are defined at the different grid points to conserve the 
mass in the cell volume; the density p, the pressure p, and the temperature T are 
defined at the center of each cell; the radial and axial components of the (mass) 
velocity u@u) and w@w) are defined at the midpoints of the radial and axial edges of 
the cell, respectively; and the azimuthal component of the (mass) velocity u@u) is 
defined at the same point as u@u). It should be noted that the mass transfer is 
completely satisfied in the cell volume by this Cartesian form of the convective term 
and by the staggered grids on the computational domain. 

An explicit scheme of the DuFort-Frankel leapfrog type of the second ordered 
accuracy is used for both time derivative and diffusion terms. The centered difference 
scheme of the second ordered accuracy is used for all the space derivatives except the 
convective term. The second upwind scheme [20] or donor cell method [21] is used 
for the convective term to ensure the numerical stability (see Table I). The second 
upwind scheme retains something of the second ordered accuracy of the centered 
space derivatives as is discussed in [20]. Hence, the present finite difference is essen- 
tially the second ordered accuracy for both time and space. 

0 0 0 0 0 0 

FIG. 3. An arrangement of grid point; 0, p and T are defined at cell center; 0, u (or pu) and D (or 
po); W, w (or pw). 
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TABLE 1 

Upwind Scheme of a(uq4)/3x 

Signs of velocities 

Using the schemes mentioned above, we obtain the finite difference equations as 
follows (dropping the caret fromp): 

@ “+‘-P”~‘)/2At=-[6,@u)“+‘+GZ@w)n+’~, (14) 

KPV+ - @u)“-‘]/2AT 

=-[S,@uu)+S;@wu)l”+[p(r+ (2+3]“&&w~ 

[@v)“” - @v)“- ’ l/245 

=-16,@uv~+6,@wv)l”-[pu(2+~~]” 

l@w)“+’ - @w)“- ’ j/2& 

=-[S,@UW)+b,@ww)]“-~r6,p’ 

(16) 

(17) 

58’/38/3-6 
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[WY+ ’ - (JO)“-‘]/2flr 

= +,@u)“+ 7n + &@w)“+’ 7”]- (y - 1)@7)“+’ Q” 

+yE/a,r[6,6,T’+(l/r)6,T”+6,6,T”] +(y- l)yM2Er@” 

P r~+’ = @T)“+ l/r, 

where 

Q = (l/r) 4.W) + 6, w, 

CP = 2[(6,U)2 + (u/r)* + (&w)‘] + (6,u - u/rj2 

+ (6, u)’ + (6, w + 6, u)’ - :Q’. 

In the above equations, the differences are defined by 

dx4i= (@i+I/Z -#i-l/2>ldxi9 

s.xsx4f= [Ui+l ~~i~/dxi+l~2~~~i~~i-l~/dxi-l~21”/2dxi~ 

with 
8 = gg;” + $1~‘), 

AXi+ l/2 = (AXi + AXi + I)/29 

AXi = (AXi+ l/2 + AXi- l/2)/2, 

(18) 
(19) 

(20) 

(21) 

(22) 

3 

where d represents one of the physical variables such as p or pu. The variable x 
represents one of the coordinates r or z, and AX,+ I,z(AXj+ l,2) is a space mesh interval 
between the grid point i (j) and i + 1 (j + 1) in the radial (axial) direction. 
Equation (21) represents the centered difference and Eq. (22) represents the 
DuFort-Frankel scheme by which the time level of the diffusion term splits into the 
forward time level n + 1 and the backward time level n - 1 at the mid-grid in the 
centered space difference. These operators are applicable to the physical variables 
defined at the midplane of the cell. Similarly, if the subscript i is replaced by i + l/2, 
then the operators are applicable to those at the cell boundary. 

As is mentioned before, our basic ideas are based on conservation laws, especially, 
the conservation of mass. For this reason, two time levels n - 1 and n + 1 are 
allowed for the space derivatives in the right-hand side of the mass conservation 
Eq. (14) corresponding to the leapfrog scheme. The explicit form of the equation 
evaluated at the backward time level n - 1 is numerically unstable, whereas the 
implicit form is unconditionally stable. It follows, hence, that the mass is completely 
conserved for time and space by using the staggered grids and this implicit form. The 
convective terms in the energy equation are evaluated at the time level rr + 1 in order 
to be consistent with the mass conservation. 

The algorithm is determined so as to solve explicitly the set of Eqs. (14~( 19) 
consistent with the implicit form of the mass conservation equation; the solution 
procedure takes the following form. 



COMPRESSIBLE ROTATING FLOWS 343 

(1) Each value of mass velocity @u)“+ ‘, @u)“” and @w)“+’ is independently 
computed from the values of the physical variables at the previous two time levels 
n - 1 and n by use of momentum Eqs. (15~( 17). 

(2) The density p”+ ’ is explicitly obtained by the substitution of @u)“” and 
@Wy+’ into the continuity Eq. (14) written in the implicit form. 

(3) The pressure @T)“+ I is obtained similarly from the energy Eq. (18). 
(4) The values of u”+ ‘, u”+ ‘, w”’ i and T”’ ’ are obtained by the division of 

the mass velocity and pressure by p”’ I. 
(5) Steps (1 k(4) form a cycle when time proceeds a time mesh Ar. 

(6) The following time filtering is made every m cycles to avoid computational 
splitting caused by the leapfrog scheme: 

4 n * 1’2 = (4” + qp* y/2. 

At the same time, time is dropped back (l/2) AT. 

(7) Steps (l)--(6) are repeated until the flow reaches the steady state. 

4. RESULTS 

4.1. Parameter Values for Computations 

Table II shows the parameter values used for the computations and the purpose of 
each case. These sets were chosen to clarify the effect of compressibility and 
nonlinearity. First, to observe the effect of compressibility, the thermally driven flows 
were computed for two cases of Mach numbers M = 3.0 and 4.0 because the effect 
appears more clearly in the thermally driven flow than in the mechanically driven 
flow. The Ekman number E = 1O-3 is chosen to take into account the effect of 
compressibility (i.e. Mach number). This value is not small enough to make the 
Ekman layer thin everywhere because the local Ekman number increases as the 
radius decreases. In particular, the region near the axis in the thermally driven flow 

TABLE II 

Computation Parameters 

Mach number 
Case M Basic Flow Purpose of analysis 

1 3.0 Thermally driven flow 
2 4.0 Thermally driven flow Effect of compressibility 

3 4.0 Mechanically driven flow 
4 4.0 

Effect of dissipation heating 
Mechanically driven flow and nonlinearity 

System: E = 1.03 x IO- ‘; y= 1.067; u,,= 0.97; H/L = 1.0; AT/T, = 3.125 X 10 ‘. 
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becomes fully viscous for the case of M = 4.0. Secondly, it is of interest to study the 
procedure by which the high speed azimuthal flow is caused in the mechanically 
driven flow. Here, heating by viscous dissipation is taken into account in case 3, but 
not in case 4. The Mach number is held at A4 = 4.0. Furthermore, we examine 
whether or not our finite difference method is applicable to nonlinear problems such 
as in mechanically driven flow. 

4.2. Computational Details 

Figure 4 shows a resolution of 19 x 21 grid points arranged on the annulus with 
the aspect ratio of A = 1.0 and the inner radius of rn = 0.3. The mesh intervals are 
nonuniform and uniform in the radial and the axial directions, respectively. This grid 
arrangement is determined by taking the boundary layer thickness into account; three 
or four grid points are induced within the boundary layer which is the E’13 layer on 
the vertical surface and the Ekman layer on the horizontal surface. 

The time mesh is determined by both the numerical stability conditions derived 
from our finite difference scheme and the arrangement of the grid points. The upwind 
scheme used here is limited by the Courant-Friedrichs-Lewy (CFL) condition. 
Numerically, the velocity defined by the time and space meshes exceeds the charac- 
teristic velocity QL (i.e., A7 < h, where h is a minimum mesh interval in r or z 
directions). Physically, if M > 1, this condition also includes the time mesh restricted 
by the shock wave which propagates with the speed of sound (i.e., if A4 > 1, then 
A7 < M/z). The DuFort-Frankel leapfrog scheme is unconditionally stable for the 
arbitrary value of the time mesh about the purely diffusion equation. However, 
computational results of the thermally driven flow show that as the Mach number is 
increased, the solution converges until the time mesh becomes about 50 times as large 
as the time mesh limit of As, given by the Euler scheme; this relation is approximated 
by A7, < W*/WP,)~ h w ere AZ is a minimum mesh interval in the z direction. It 
follows that the time mesh depends on the Mach number in the same relation 
A7 -p,(r,) given by the Euler scheme because AZ is chosen as the Ekman layer 
thickness E”*, so that the time mesh is restricted by the lowest density near the axis 
of rotation. In the computations, the time iteration involved 7 117 steps at 

FIG. 1. A grid arrangement of 19 x 21. 
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A7 = 5 x 10m3 for case 1 (Table II) in which the time mesh (- 2047,) is limited by 
the DuFort-Frankel scheme condition, and for case 2 in which the time mesh 
(- h = 2 x 10-2) is limited by the CFL condition. The time iteration involved 7 117 
steps at A7 = 5 x lop3 for case 3 and 9150 steps at A7 = 4 X lop3 for case 4. Note 
that both time meshes are also limited by the CFL condition, but the viscous 
dissipation aids in making the time mesh longer in case 3. When the number of time 
filterings was more than 50, the computation diverged due to time splitting caused by 
the leapfrog scheme. When the numbers were 20, 30 and 40, the computation 
converged, but the solutions differed slightly from each other. For this reason, time 
filtering was made every 30 time steps for all cases. The CPU time was of the order 
of 250 set on a HITAC M-180 computer with IAP (Integrated Array Processor) 
using a core memory of 360K for a 19 x 21 resolution and 7117 steps. The CPU 
time depends on the total number N of the grid points in radial and axial directions, 
and also depends on the number N, of the time iteration (i.e., the time up to the 
asymptotic state). If we take the spin-up time E- ‘I2 defined at the outer sidewall as 
the measure of the time scale, Nt = E-‘/*/A7 is written into N”‘/p,(r,) by using 
El’* = AZ - N-l” and A7 - p,(r,). If the time mesh is limited by the DuFort-Frankel 
scheme condition, the CPU time is proportional to N’.’ exp[ 1/2yM*(ri - l)]. 
Similarly, if the time mesh is limited by the CFL condition (i.e., A7 < h), the CPU 
time is proportional to N*. 

The enhanced stability of the upwind scheme over the centered space scheme of the 
convective term is a result of the introduction of the artificial viscosity (or numerical 
diffusion) term in the numerical procedure. The ratio of the artificial to real viscosity 
is approximated by aI= 1/2@w) AI-E-’ in the radial direction or by 
(r, = 1/2@w) AzE-’ in the axial direction using the same manner as in [22]. This 
indicates that the artificial viscosity is proportional to only the cell Reynolds number 
of Re (= pu ArE-’ or pw AzE-‘) or proportional to both the grid size and the mass 
velocity. It should be noted that the artificial viscosity induced by the leapfrog and 
the upwind schemes does not depend on the Courant number c (= u Ar/Ar or 
w A7/Az) which appears in that induced by the Euler and the upwind schemes (i.e., 
a = l/2 Re(1 - c)). Table III shows the maximum values and their positions of 
artificial viscosity resulting from all cases. It can be seen that the artificial viscosity is 

TABLE III 

Maximum Values of the Artificial Viscosity 

Artilicial viscosity in Artificial viscosity in 
Case the radial direction Coordinates the axial direction Coordinates 

a, r z a. r z 

I 9.28 x 10-j 0.92 0.025 4.15 x 10 2 0.92 0.50 
2 2.19 x 10m4 0.94 0.025 1.51 x 10-l 0.97 0.50 
3 9.99 x 10-J 0.87 0.075 3.20 x IO- ’ 0.97 0.25 
4 1.02 x IO-2 0.87 0.075 3.19 x 10-l 0.97 0.20 
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small in comparison with the real viscosity. Although the artificial viscosity in the 
axial direction seems large for the mechanically driven flow, the effect is small; the 
computation using a 19 X 21 resolution shows that the axial velocity changes slightly 
in comparison with those by a finer 24 x 26 and a coarser 14 x 16 resolution (see 
Appendix). 

The DuFort-Frankel leapfrog scheme introduces the artificial wave during the 
transient state, but this effect becomes small when we choose an adequate time mesh 
and grid size. The results of such tests mentioned above are discussed in the 
Appendix (see Fig. 12). 

4.3. Evolution of the Flow 

The time development of the flow is illustrated by kinetic energies and the average 
temperature in Figs. 5a and b for cases 2 (thermally driven flow) and 3 (mechanically 
driven flow), respectively. The transient aspects of cases 2 and 3 are similar to the 
thermal spin-up (or more exactly, case 2 is a heat-up problem [23]) and the 
mechanical spin-down (from rotation to rest), respectively. 

0 

b o 5 IO 30 35 
z 

FIG. 5. Time development of kinetic energies and average temperature for (a) case 2 (thermally 
driven flow) and (b) case 3 (mechanically driven flow). Diagrams have global integrals; (A) (ipu’); (B) 
(;pv’); (C) ($w*); (D) ($(u’ + vz + w’)); (E) 0. 
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We can see that the thermally driven flow is predominantly an axial flow at all 
times resulting from the Taylor-Proudman theorem [24] as shown in Fig. 5a. The 
transient states are similar to those discussed in [ 15,251 except the compressibility 
effect; these time scales are formation times of the Ekman layer, the E”3 layer and 
the spin-up time. The formation of the Ekman layer is shown by the result that both 
radial and azimuthal components of mean kinetic energy increase and decrease to 
each other during the initial stage of r = 0 - 3 (- O(1)) with the oscillation (whose 
frequency is about 2R 1261) caused by the Coriolis force. The spin-up process is also 
shown by the result that the axial component increases gradually. Hereafter, all of 
them approach the steady state and tend to be steady at r N 10 when the E”3 layer is 
formed. This suggests that the spin-up time (- O((E/p)-“2)) is of the same order as 
the formation time (- O((E/P)-“~)) of the E iI3 layer due to compressibility effects. 
In fact, computational results show that the maximum value of the axial velocity (at 
the position of r = 0.725 and z = 0.50) reaches 93.1, 99.8 and 100.0% of the steady 
state value at times r = 10, 20 and 30, respectively. No variation was observed within 
four significant figures of the computed values during r = 30 - 35, and hence the 
steady state is represented by the asymptotic solution at r = 35. 

As seen in Fig. 5b, on the other hand, the kinetic energy of the mechanically driven 
flow is about lo4 times as large as that of the thermally driven flow due to the 
azimuthal velocity difference between both cases; the azimuthal velocity is of order 
unity (i.e., N J2L in the dimensional unit) for the mechanically driven flow and it is 
on the order of AT/T, = 3.125 X 10m2 (i.e., - (AT/T,,) U) for the thermally driven 
flow. Furthermore, the azimuthal component of the mean kinetic energy plays a 
primary role at all times for the mechanically driven flow. The azimuthal component 
rapidly increases (in a rotating system, but it decreases in an inertial system) during 
the initial stage of r= 0 - 3, and hereafter it approaches the steady state 
monotonically. Both radial and axial components reach the maximum values at r = 1 
and 3, respectively, after the initial increase, and they decrease while approaching the 
steady state. The convergence rate in case 3 is similar to that in case 2 and the steady 
state is represented by the asymptotic solution at 7 = 35. Cases 1 and 4 also 
converged at t = 35. 

The time variation of the average temperature 0 is very similar to that of ($w’) 
due to the compression (or expansion) work for the thermally driven flow. For the 
mechanically driven flow, the variation of 0 corresponds to that of ($u”) due to the 
dissipation heating. 

4.4. Thermally Driven Flow 

Before comparing our results with those of the boundary layer theory [5,6], we 
summarize the results of the theory. The theory predicts that the Ekman layers and 
the E1’3 layer [ 121 are formed on end plates and on the sidewall of the cylinder (not 
an annulus), respectively, and that there are two main circulations associated with 
these horizontal and vertical boundary layers. One is the Ekman suction flow in the 
inviscid core from the top to the bottom. The flow within the E”3 layer is circulating 
in the same direction as the Ekman suction flow. These boundary layers match the 
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thermal wind in the inviscid core with the boundary conditions imposed on the 
surface. 

The computational conditions of case 1 (A4 = 3.0) are within the assumption of the 
boundary layer theory except for the geometrical configuration used in our 
computations. The computational conditions of case 2 (A4 = 4.0) is beyond the 
assumption of the theory by virtue the absence of the inviscid core caused by the 
compressibility effect. 

Results of cases 1 (A4 = 3.0) and 2 (A4 = 4.0) are shown in Figs. 6 through 9 at the 
time t = 35.0 when the solution becomes almost steady. Figures 6a and b show the 
vector plots of the meridional motion for cases 1 and 2, respectively. We can observe 
that the thermally driven circulation is established for both cases and that the 
circulation is almost axial as is predicted by the partition of the kinetic energy. 
Secondly, the flow pattern does not change although the circulation is weakened as 
the Mach number is increased. These results suggest that the prediction of the 
boundary layer theory qualitatively agrees with the present results for the strongly 
compressible, viscous case of A4 = 4.0. 

Figure 7 shows the contour plots of the azimuthal velocity plotted with the same 
intervals. We can see that the thermal wind, however, becomes weaker as the Mach 
number is increased corresponding to the weakness of the circulation. The structure 
of the thermal wind is asymmetric with respect to the midheight z = 0.50. The asym- 
metric structure is confirmed by the axial distributions of the azimuthal velocity for 
the case of M = 4.0 shown in Fig. 9b. Corresponding to this asymmetry, the axial 
distributions of the radial velocity in Fig. 9a are also asymmetric with respect to 
z = 0.50 at both radii r = 0.5 and 0.7. The profile at r = 0.9 shows that the radial 
flow is confined near the top and the bottom plates by the smallness of the local 
Ekman number (cf. Fig. 1 la). 

a 0.5 1.0 
r 

FIG. 6. Vector plots of the meridional motion at r= 35.0 for the thermally driven flow with (a) 
M = 3.0 (case 1) and (b) M = 4.0 (case 2). 
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FIG. 7. Contour plots of the azimuthal velocity at r = 35.0; (---) M = 3.0 (case I), where 
maximum (0) = 6.01 x lo-‘; (-) M = 4.0 (case 2), where maximum (0) = 9.85 X 10 ‘. 

The contour plots of temperature (isotherms) are shown in Fig. 8. We see that the 
isotherms are approximately parallel to the end plates and are nearly equidistant to 
each other, except near the inner cylinder (i.e., most of the gas has nearly the same 
temperature as the outer cylinder on which the temperature is a linear function of z). 
The contour 0, which represents the average temperature of both plates, is located at 
the midheight z = 0.50. This is related to the asymmetric structure of the thermal 
wind. The isotherms vary slightly with the variation of the compressibility. The 
temperature approaches more to that of the outer cylinder for M = 4.0 than for 
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FIG. 8. Contour plots of temperature (isotherms): (---) M = 3.0 (case I): (--) M = 4.0 
(case 2). Values are scaled by AT/T, = 3.125 x lo-‘. 
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M= 3.0. This is because the thermal diffusivity is increased as the compressibility is 
increased by the fact that the density rapidly decreases towards the inner cylinder. 

Finally, we make a quantitative comparison of our results with the boundary layer 
approximation. Figure 9c shows the radial distributions of the axial velocity at the 
midheight z = 0.50. The analytic solution is only for M = 3.0 because the boundary 
layer is not applicable for the case of M = 4.0. For the present comparison, the result 
of case 1 (A4 = 3.0) is scaled by the characteristic velocity of case 2 (M = 4.0). It is 
interesting that the maximum value of the axial velocity is on the same order of the 
Ekman suction flow despite the different geometry (the cylinder and the annulus) and 
temperature. This implies that the Ekman suction flow is established in the region 
near the end plates. We see that the E ‘I3 layer solution disagrees with the result of 
case 1 (M = 3.0), i.e., the axial velocity near the outer cylinder is larger than that of 
the E”3 layer solution and the layer is thinner than that predicted by the E”3 layer 
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FIG. 9. Results of case 2 (thermally driven flow) at r = 35.0. (a) The vertical profiles of the radial 
velocity. (b) The vertical profiles of the azimuthal velocity. (c) The horizontal profiles of the axial 
velocity at z = 0.50. Figure 9c includes results of case 1 (M = 3.0) and the boundary layer analysis 
(- - -, fZ’13 layer solution; - -, Ekman suction solution) for M= 3.0 for comparison. 
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solution. As a result in case 2 (M = 4.0), the axial velocity is decreased and the 
profile moves towards the outer cylinder. This suggests, as we expected, that the 
amount of the circulating mass becomes weak as compressibility is increased. At the 
same time, the role of the Ekman layer suction becomes small in the mass transport 
by the increases of the kinematic viscosity in the low density interior. 

4.5. Mechanically Driven Flow 

The mechanically driven flow caused by the scoop pipe is approximated by the 
slowly rotating plate under the assumption of axisymmetry [ 11. Physically, the 
present case provides us with the limiting case of the mechanically driven flow 
because the large angular velocity difference is imposed on the annulus as shown in 
Fig. 2b. For this reason, the present case also provides us with an opportunity to 
examine whether or not our finite difference technique is applicable to the nonlinear 
problem. In addition, the mechanical energy is transformed into heat both by 
molecular dissipation (friction) and by compression (or expansion) work. Cases 3 
and 4, respectively, are computed with and without molecular disipation to examine 
its effect. 

Results of cases 3 and 4 are shown in Figs. 10 and 11 at time t = 35.0 when the 
asymptotic behaviour of our solution represents the steady state (see Section 4.3). 
Figure 1 la shows the radial distributions of the local Ekman number at z = 0.50. 
Results of the thermally driven flows are also given for comparison. The local Ekman 
number rapidly increases towards the axis of rotation because the angular velocity is 
nearly equal to that of the rigid body rotation. Particularly, the local Ekman number 
exceeds the order unity near the inner cylinder for It4 = 4.0 (case 2). On the other 
hand, the increase of the local Ekman number is gradual for the mechanically driven 
flow because of the slower rotation compared with the rigid body rotation. It follows, 
hence, that the thermally driven flow for M = 4.0 is effectively more viscous than the 
mechanically driven flow. Figures 10a and b, respectively, show the velocity vector 
plots of the meridional motion and contour plots of the azimuthal velocity plotted 
with the same intervals, for case 3. We see that the countercurrent flow circulates 
from the bottom to the top plate near the outer cylinder. It is noted that the flow 
pattern is quite different from that of the thermally driven flow (case 2), i.e., the ther- 
mally driven flow is stretched along the direction of the axis of rotation and the 
stretch is weaked in the case of the mechanically driven flow (Fig. 6b). We see that 
most of the gas rotates faster than half the angular velocity of the outer cylinder, and 
that the region of the low azimuthal velocity is confined in the neighbourhood of the 
bottom stationary plate. This is because the angular momentum given from the 
rotating surface is larger than that taken from the stationary surface. As we see in 
Fig. 1 lc, the radial distributions of the angular velocity are smaller than that of the 
cylindrical Couette flow because of the presence of the bottom stationary plate. Axial 
distributions of the angular velocity are larger than that of the flow between a 
stationary and a rotating infinite disk [ 271 as Fig. 1 Id shows, because the angular 
velocity is increased by the outer rotating cylinder. The axial distribution of the 
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angular velocity induces the vertical density stratification in which the upper region is 
effectively more viscous than the lower region. A strong radial inflow is formed in the 
bottom Ekman layer (which becomes thicker towards the inner cylinder) as is shown 
in Fig. 1 lb. The meridional flow becomes weak and wide, and changes its direction 
towards the outer cylinder as it approaches the upper region, where the flow field is 
more viscous than the lower region (Fig. 10a). 
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FIG. 10. Results of cases 3 and 4 (mechanically driven flow) at r = 35.0. (a) Vector plots of the 
meridional motion. (b) Contour plots of the azimuthal velocity, where contour 9 represents the value of 
-7.13 x 10-l. (c) Contour plots of temperature (isotherms) where maximum (0)= 1.19. (d) Contour 
plots of temperature (isotherms) for case 4, where maximum (0)= 1.01 and minimum 
(0) = 9.89 x 10-l. 
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FIG. 11. Results of cases 3 and 4 at time r = 35.0. (a) The radial distribution of the local Ekman 
numbers at z = 0.50; (---) M = 3.0 (case 1); (- -) M= 4.0 (case 2); (-) case 3. (b) The 
horizontal profiles of the radial velocity for case 3. (c) The horizontal profiles of the angular velocity for 
case 3. (d) The vertical profiles of the angular velocity; (-) case 3; (---) case 4; (- -) E = IO-* 
(Pearson 1271). (e) The horizontal profiles of the axial velocity; (-) case 3; (---) case 4. (f) The 
vertical profiles of temperature; (---) case 3, (---) case 4. 
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When dissipation is absent (i.e., for case 4), the mechanically driven flow becomes 
weak although the flow pattern varies only slightly. Figure 1 le clarifies that the axial 
velocity is decreased by the absence of dissipation. It should be noted that when 
dissipation is absent, the angular velocity is decreased in the lower region (z ( 0.50) 
of low temperatures by the expansion work and is increased in the upper region 
(z > 0.50) of high temperatures by the compression work. To the contrary, when 
dissipation is present, the thermal wind is induced by the axial temperature gradient. 
Hence, the mechanically driven flow becomes stronger by coupling with the thermally 
driven flow which is caused by the dissipation heating. 

Figure 1Oc shows contour plots of the temperature (isotherms) plotted with the 
same interval. Isotherms indicate that the temperature increases steeply near the 
bottom plate and decreases near the top plate despite no prescribed temperature 
difference on the boundary. In particular it reaches the maximum value near the 
bottom plate corresponding to the location of the minimum value of the angular 
velocity (Fig. lob). The temperature field depends on the gas motion by the effect of 
the dissipation and the compression (or expansion) work. In case 3, the azimuthal 
component is the major part of total kinetic energy as we can see in Fig. 5b. Hence 
heating by compression or cooling by expansion is small in comparison with heating 
by friction. This is because the Eckert number E, = (y - 1) M2 and the relative 
difference of the azimuthal velocity between the gas and the annulus are both on the 
order of unity. Figure 10d shows the contour plots of the temperature (isotherms) for 
the case without dissipation (case 4). We see that the temperature decreases near the 
bottom plate by expansion and it increases near the top plate by compression. Axial 
distributions of the temperature are shown in Fig. 1 If including both cases with and 
without dissipation. These results clarify that the dissipation heating is more 
important than the heating by compression (or expansion) for the mechanically 
driven flow. 

5. CONCLUSION 

We have presented a finite difference method for solving the full Navier-Stokes 
equations of a compressible, rotating gas. This method, based on the upwind and 
DuFort-Frankel schemes, is efficient for computations of strongly compressible 
rotating flows. The method is applied to the thermally and mechanically driven flow 
in a gas centrifuge in order to examine our finite difference method. 

Computations provide us with reasonable results for both flows. It is found that the 
thermally driven circulation becomes weak as the effect of compressibility increases. 
In the mechanically driven circulation, the temperature increases by viscous 
dissipation despite the cooling by expansion work and the lack of temperature 
difference on the boundary. 
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FIG. 12. Comparison of the axial velocity results at z = 0.50 for a 14 x 16, a 19 x 21 and a 
24 X 26 resolution of case 2 (thermally driven flow for M = 4.0). 

APPENDIX 

The computational results include the errors of meshes for time and space 
associated with the present finite difference schemes, so that computations are carried 
out with variations of time and space meshes in order to examine the accuracy of 
computaions. The 14 x 16 and 24 x 26 resolutions, respectively, are chosen as the 
rough and dense grid systems in order to compare the results from a 19 x 21 
resolution using the fixed time mesh As = 5 x 10P3. A smaller time mesh 
A7 = 4 x 10m3 is chosen to compare with results from the time mesh A7 = 5 x 10e3 
with the fixed 19 x 21 resolution. Figure 12 shows the horizontal profiles of the axial 
velocity at midheight z = 0.50 for case 2 (thermally driven flow) using 14 x 16, 
19 X 21 and 24 x 26 resolutions. In comparison with these results, the axial velocity 
is decreased by about 3 % for the dense grid resolution and is increased by about 4 % 
for the rough grid resolution. Other physical variables change very slightly for both 
resolutions. Results change more slightly for the time mesh variation than those for 
the space mesh variation. Similar results are obtained for the mechanically driven 
flow with respect to the variations of time and space meshes. 
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